Effects of Nutrient Availability on the Biomass Production and CO2 Fixation in a Flat Plate Photobioreactor
نویسندگان
چکیده
A thermophilic cyanobacterium named Thermosynechococcus CL–1 (TCL–1) was cultivated in the flat plate photobioreactors under strong illumination with dense culture to examine the effects of nutrient concentrations on the biomass production, CO2 fixation, and the potential as the feedstock for bioethanol production. The results show that concentrations of Na, NO3, and CaCl2•2H2O, should be decreased, but the MgSO4•7H2O concentrations should be enhanced to increase the biomass productivity or persistence of the growth. Most of the carbon contents in TCL–1 remain stable, about 40%, under various nutrient levels. In addition, the Su and Chu’s medium was reorganized by picking up the nutrient concentrations resulted in the great biomass production. The adoption of the new medium for cultivating TCL–1 exhibits the great biomass productivity, CO2 fixation rate, and glycogen productivity at 138.7, 221.5, and 75.9 mg L h, respectively, under 2,000 μE m s illumination in the 1.5 cm light path flat plate photobioreactors. The high biomass productivity, CO2 fixation and glycogen productivity indicate the use of Su and Chu’s medium exhibits high potential for applying TCL–1 in CO2 fixation and bioethanol production potential in the flat plate phptobioreactors.
منابع مشابه
Experimental Study and Numerical Modeling of CO2 Bio-Fixation in a Continues Photobioreactor
A dynamic numerical model was developed to predict the biomass concentration, pH, and carbon dioxide fixation rate in the continuous culture of cyanobacteria in a photobioreactor. The model is based on the growth rate equation of microalgae combined with mass transfer equations for gas and liquid phases in the photobioreactor as well as thermodynamic equilibrium of inorganic carbon ions in the ...
متن کاملEvaluation of Biomass Production and Wastewater Nutrient Removal Using Microalgae: Sustainable Strategy to CO2 Bio-Fixation and Bioenergy Production Approach
Nowadays, the replacement of renewable energies such as biofuels is one of the main priorities in environmental programming and investments. This study is based on sustainable strategy towards integrating algal biomass generation as a green feedstock with wastewater treatment, CO2 bio-fixation, and bioenergy production. Therefore, the performance of Trichormus variabilis in ...
متن کاملPredictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor
The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards) were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ), maximum specific...
متن کاملSemi-Continuous Cultivation of Photosynthetic Cells in a Flat Plate Photobioreactor
From an engineering point of view, the effect of light intensity distribution on the stability of growth rate should be taken into account in designing effective photobioreactors and sustaining stable growth rates. In the experiments described here, in order to keep operational parameters at an almost constant level, a semi-continuous culture method was developed for cultivation of photosynthet...
متن کاملAssessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors.
The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), r...
متن کامل